R/label_transfer.R
FitEnsemblMultiClassif.Rd
Training an ensemble classifier for cell type prediction.
FitEnsemblMultiClassif(
feature.mat,
cell.types,
do.norm = "L2",
mlr3.model = "classif.svm",
batch.size = 5000,
n.models = 100,
balance.cell.type = TRUE,
cores = -1
)
A signature score matrix, rows are cells, columns are features.
A data.frame recording cell types at different granularity.
Whether normalize the feature matrix. L1, L2, NULL. Default: 'L2'
classif.svm, classif.xgboost, classif.randomForest. Default: classif.svm
The number of cells for each model. Default: 5000
The number of SVM model. Default: 100
A boolen determines whether performing balance sampling. Default: True
The number of CPU for training. Default: -1, use all available threads.
a list of trained learners.