In this tutorial, we utilized ProjetSVR to project decidual immune cells from both healthy individuals and patients with recurrent pregnancy loss (RPL) 1 onto a previously reported human maternal-fetal interface atlas 2.

Download Reference Models and Query Data

# reference model
if (!dir.exists("models")) dir.create("models")
download.file(url = "https://zenodo.org/record/8350732/files/model.Vento2018.MFI.rds", 
              destfile = "models/model.Vento2018.MFI.rds")
# query data
if (!dir.exists("query")) dir.create("query")
download.file(url = "https://zenodo.org/record/8350748/files/Guo2021.MFI.seurat.slim.qs", 
              destfile = "query/Guo2021.MFI.seurat.slim.qs")

Map Query to Reference

Reference mapping

reference <- readRDS("models/model.Vento2018.MFI.rds")
seu.q <- qs::qread("query/Guo2021.MFI.seurat.slim.qs")

seu.q$sample_id <- seu.q$orig.ident
seu.q$group <- factor(sub("[0-9]", "", seu.q$orig.ident), levels = c("Ctrl", "RPL"))

seu.q <- ProjectSVR::MapQuery(seu.q, reference = reference, add.map.qual = T, ncores = 10)

DimPlot(seu.q, reduction = "ref.umap", group.by = "sample_id", pt.size = .1)

Maping quality

## cutoff by adjusted p value
MapQCPlot(seu.q, map.q.cutoff = 2)

Visualize the projected query cells onto the reference atlas.

PlotProjection(seu.q, reference, split.by = "group", ref.color.by = "cell_type", 
               ref.size = .5, ref.alpha = .3, query.size = 1, query.alpha = .5, 
               n.row = 1, legend.ncol = 2)

Label transfer

seu.q <- subset(seu.q, mean.knn.dist < 2)
seu.q <- ProjectSVR::LabelTransfer(seu.q, reference, ref.label.col = "cell_type")

DimPlot(seu.q, group.by = "knn.pred.celltype", split.by = "group") + 
  scale_color_manual(values = reference$ref.cellmeta$colors)

When we focus on the dNK population, we found that the dNK cells in RPL were shifted to dNK3 population, as reported in the original paper 1.

seu.q.dNK <- subset(seu.q, knn.pred.celltype %in% c("dNK p", "dNK1", "dNK2", "dNK3") )

PlotProjection(seu.q.dNK, reference, split.by = "group", ref.color.by = "cell_type", 
               ref.size = .5, ref.alpha = .3, query.size = .1, query.alpha = .1, 
               n.row = 1, legend.ncol = 2)

Alluvia plot

AlluviaPlot(seu.q.dNK@meta.data, by = "group", 
            fill = "knn.pred.celltype",
            bar.width = .5, legend.ncol = 1)

Compare the predicted labels vs the mannually annotated labels

data.stat <- table(seu.q$cell_type, seu.q$knn.pred.celltype)
data.stat <- data.stat[, colSums(data.stat) > 0]

pheatmap::pheatmap(data.stat, display_numbers = T, number_format = "%.0f", 
                   cluster_rows = F, cluster_cols = F, number_color = "black")

Session Info
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
##  [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
##  [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
## [10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] lubridate_1.9.2    forcats_1.0.0      stringr_1.5.0      dplyr_1.1.3       
##  [5] purrr_1.0.2        readr_2.1.4        tidyr_1.3.0        tibble_3.2.1      
##  [9] ggplot2_3.4.3      tidyverse_2.0.0    ProjectSVR_0.2.0   SeuratObject_4.1.3
## [13] Seurat_4.3.0.1    
## 
## loaded via a namespace (and not attached):
##   [1] utf8_1.2.3             spatstat.explore_3.2-3 reticulate_1.31       
##   [4] tidyselect_1.2.0       mlr3learners_0.5.6     htmlwidgets_1.6.2     
##   [7] BiocParallel_1.28.3    grid_4.1.2             Rtsne_0.16            
##  [10] mlr3misc_0.12.0        munsell_0.5.0          codetools_0.2-18      
##  [13] bbotk_0.7.2            ragg_1.2.5             ica_1.0-3             
##  [16] future_1.33.0          miniUI_0.1.1.1         mlr3verse_0.2.8       
##  [19] withr_2.5.0            spatstat.random_3.1-6  colorspace_2.1-0      
##  [22] progressr_0.14.0       highr_0.10             knitr_1.43            
##  [25] uuid_1.1-1             rstudioapi_0.15.0      stats4_4.1.2          
##  [28] ROCR_1.0-11            robustbase_0.99-0      tensor_1.5            
##  [31] listenv_0.9.0          labeling_0.4.3         mlr3tuning_0.19.0     
##  [34] lgr_0.4.4              polyclip_1.10-4        pheatmap_1.0.12       
##  [37] farver_2.1.1           rprojroot_2.0.3        parallelly_1.36.0     
##  [40] vctrs_0.6.3            generics_0.1.3         xfun_0.40             
##  [43] timechange_0.2.0       diptest_0.76-0         R6_2.5.1              
##  [46] doParallel_1.0.17      clue_0.3-64            isoband_0.2.7         
##  [49] flexmix_2.3-19         spatstat.utils_3.0-3   cachem_1.0.8          
##  [52] promises_1.2.1         scales_1.2.1           nnet_7.3-17           
##  [55] gtable_0.3.4           globals_0.16.2         mlr3hyperband_0.4.5   
##  [58] goftest_1.2-3          mlr3mbo_0.2.1          rlang_1.1.1           
##  [61] systemfonts_1.0.4      GlobalOptions_0.1.2    splines_4.1.2         
##  [64] lazyeval_0.2.2         paradox_0.11.1         spatstat.geom_3.2-5   
##  [67] checkmate_2.2.0        yaml_2.3.7             reshape2_1.4.4        
##  [70] abind_1.4-5            mlr3_0.16.1            backports_1.4.1       
##  [73] httpuv_1.6.11          tools_4.1.2            ellipsis_0.3.2        
##  [76] jquerylib_0.1.4        RColorBrewer_1.1-3     BiocGenerics_0.40.0   
##  [79] ggridges_0.5.4         Rcpp_1.0.11            plyr_1.8.8            
##  [82] deldir_1.0-9           pbapply_1.7-2          GetoptLong_1.0.5      
##  [85] cowplot_1.1.1          S4Vectors_0.32.4       zoo_1.8-12            
##  [88] ggrepel_0.9.3          cluster_2.1.2          here_1.0.1            
##  [91] fs_1.6.3               magrittr_2.0.3         data.table_1.14.8     
##  [94] scattermore_1.2        circlize_0.4.15        lmtest_0.9-40         
##  [97] RANN_2.6.1             fitdistrplus_1.1-11    matrixStats_1.0.0     
## [100] stringfish_0.15.8      qs_0.25.5              hms_1.1.3             
## [103] patchwork_1.1.3        mime_0.12              evaluate_0.21         
## [106] xtable_1.8-4           mclust_6.0.0           IRanges_2.28.0        
## [109] gridExtra_2.3          shape_1.4.6            UCell_1.3.1           
## [112] compiler_4.1.2         mlr3cluster_0.1.8      KernSmooth_2.23-20    
## [115] crayon_1.5.2           htmltools_0.5.6        tzdb_0.4.0            
## [118] later_1.3.1            RcppParallel_5.1.7     RApiSerialize_0.1.2   
## [121] ComplexHeatmap_2.10.0  rappdirs_0.3.3         MASS_7.3-55           
## [124] fpc_2.2-10             mlr3data_0.7.0         Matrix_1.6-1          
## [127] cli_3.6.1              parallel_4.1.2         igraph_1.5.1          
## [130] pkgconfig_2.0.3        pkgdown_2.0.7          sp_2.0-0              
## [133] plotly_4.10.2          spatstat.sparse_3.0-2  foreach_1.5.2         
## [136] bslib_0.5.1            mlr3fselect_0.11.0     digest_0.6.33         
## [139] sctransform_0.3.5      RcppAnnoy_0.0.21       mlr3filters_0.7.1     
## [142] spatstat.data_3.0-1    rmarkdown_2.24         leiden_0.4.3          
## [145] uwot_0.1.16            kernlab_0.9-32         shiny_1.7.5           
## [148] modeltools_0.2-23      rjson_0.2.21           lifecycle_1.0.3       
## [151] nlme_3.1-155           jsonlite_1.8.7         mlr3tuningspaces_0.4.0
## [154] desc_1.4.2             viridisLite_0.4.2      fansi_1.0.4           
## [157] pillar_1.9.0           lattice_0.20-45        fastmap_1.1.1         
## [160] httr_1.4.7             DEoptimR_1.1-2         survival_3.2-13       
## [163] glue_1.6.2             mlr3viz_0.6.1          png_0.1-8             
## [166] prabclus_2.3-2         iterators_1.0.14       spacefillr_0.3.2      
## [169] class_7.3-20           stringi_1.7.12         sass_0.4.7            
## [172] mlr3pipelines_0.5.0-1  palmerpenguins_0.1.1   textshaping_0.3.6     
## [175] memoise_2.0.1          irlba_2.3.5.1          future.apply_1.11.0